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An analysis of the full, compressible, non-adiabatic boundary-layer equations 
is presented to describe the so-called ‘throat’ formed when a two-dimensional 
viscous layer, interacting with a supersonic inviscid outer stream, is accelerated or 
decelerated through sonic velocity defined in some mean sense. The basic analysis 
differs from previous momentum integral theories in that the dynamics of the 
viscous layer is described by the exact local expressions for the streamwise 
gradients of the flow variables that obtain from the boundary-layer conservation 
equations, rather than on streamwise derivatives of integral properties of these 
equations. The theory is then used to develop an extensive analogy with the 
classical analysis of the throat in the inviscid quasi one-dimensional streamtube. 
The theory shows that a single integral constraint exists at  the throat, which re- 
lates thevelocity and temperature profiles in the viscous layer to the motion of the 
inviscid outer flow. One consequence of this constraint is that, for a one-parameter 
family of profile shapes, the solution can be started at  the throat station by speci- 
fying only a single variable, the free stream Reynolds number based on the 
physical thickness of the viscous layer at  the throat station. For the hypersonic 
near wake, this simplification permits one to obtain an approximate solution 
for the downstream flow without first solving the detailed motion in the base 
recirculation region. The paper ends with a discussion of the numerical results 
for the Stewartson family of wake-like profiles. 

1. Introduction 
One of the simplest, yet most fundamental and useful of the mathematical 

treatments in the historical development of modern gas dynamics is the analysis 
of the steady, quasi one-dimensional, inviscid streamtube. By far the most 
intriguing and important aspect of this problem is the change in physical 
behaviour that occurs at the station where the flow is accelerated or decelerated 
through sonic velocity. A closely related problem is the corresponding two- 
dimensional phenomenon that occurs when a viscous layer, interacting with a 
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supersonic outer stream, is accelerated or decelerated through sonic velocity 
described in some gross sense. This problem has been the subject of much recent 
interest because of its relation to supersonic wake flows. Due to the complexity 
of the governing equations for a shear layer, most previous investigators have 
appealed to integral techniques to study the two-dimensional viscous pheno- 
menon. In  the present paper a more general theory is developed to treat this 
phenomenon, which has much of the same rigor and simplicity as the classical 
analysis of the inviscid one-dimensional throat. This theory, since it does not 
employ averaging approximations but uses instead the local expressions for the 
streamwise gradients of the flow variables as they obtain from the boundary- 
layer conservation equations, is able to provide an understanding of the detailed 
behaviour and answer a number of conceptual questions that are inaccessible 
to the integral techniques. The limitations of the analysis are basically those 
inherent in the boundary-layer approximation: the neglect of the normal pressure 
field and the arbitrariness in the definition of the boundary-layer outer edge. 

The integral techniques, first introduced by Crocco & Lees (1952) for 
adiabatic flow and since elaborated on and extended by a number of investigators 
(Glick 1962; Lees & Reeves 1964; Reeves & Lees 1965; Webb et al. 1965; Go& 
Webb & Lees 1967; Ai 1967), have shown important qualitative similarities 
between the over-all behaviour of the one-dimensional and two-dimensional 
phenomena. In  these theories the viscous region, by virtue of the integral 
averaging process, is represented as an equivalent one-dimensional flow with 
dissipation. The interaction with the inviscid outer flow enters through the 
description of the streamwise pressure gradient, which is not prescribed as in 
ordinary boundary-layer theory but determined through the growth in displace- 
ment thickness of the viscous region. 

The above investigations have all shown that for profiles typical of the laminar 
near wake the downstream integration of the coupled system of ordinary dif- 
ferential equations for the integral average properties encounters an unstable 
singularity of saddle-point type. The solutions exhibit a divergent downstream 
behaviour that can be suppressed through very fine adjustments of a single free 
parameter in the initial data. This singularity, often referred to as the Crocco- 
Lees ‘critical point’, is similar in several respects to the saddle point singularity 
at the 2M = 1 or minimum area station in the inviscid, quasi one-dimensional 
streamtube. While a rigorous analogy is not possible, the results of the integral 
method suggest that at  the ‘ critical point ’ the Mach number of the viscous layer 
is unity in some average sense. At this station a complicated mathematical con- 
straint is imposed on the inviscid outer flow which limits the possible outer flow 
solutions to a discrete number (Ai 1967) but does not necessarily uniquely deter- 
mine the flow. Intuitively, one suspects that this constraint is related in some 
manner to the corresponding constraint, dAldx = 0, at  the throat of the quasi 
one-dimensional streamtube. It is also thought that at the ‘ critical point ’ the 
physical behaviour changes from subsonic to supersonic in the mean, or vice versa, 
with respect to both the pressure-area rule and the upstream propagation of 
disturbances. The latter behaviour is suggested by the fact that when the forward 
integration of the integral relations is initiated downstream of the ‘ critical point ’ 
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the divergent behaviour mentioned earlier is no longer present. A more precise 
treatment of each of these points can be obtained from the detailed analogy with 
the quasi one-dimensional streamtube developed in the present study. 

The results obtained from the integral moment methods have raised several 
important conceptual questions. One question involves the relationship o f  the 
throat constraint to the problem of flow uniqueness. The results of the integral 
methods indicate that for a one-parameter family of profile shapes the condition 
that the solution curves pass smoothly through the downstream singularity is 
sufficient to determine the one free parameter. An obvious corollary to this is 
that for a many-parameter description this same condition cannot by itself 
determine the profiles a t  the singularity. These results are also borne out by the 
present theory, which shows that the throat constraint takes the form of a single 
integral condition relating the physical thickness of the viscous layer and the 
various parameters used in the description of the velocity and enthalpy profiles. 

A second question arising from the results of the integral methods concerns 
the frequent absence of any solution for sufficiently low Reyonolds number. 
Ai (1967) has carefully analyzed the ‘critical point singularity’ of the multi- 
moment integral theory in Poincare phase space. He found that, for all cases 
studied, there is a minimum critical Reynolds number below which no solutions 
exist. It is not clear from Ai’s analysis whether this behaviour is physically mean- 
ingful, or due to approximations inherent in the integral method. 

A third basic question is raised by the dependence of the results on the some- 
what arbitrary definition of the boundary-layer outer edge, Weinbaum (1967) 
has suggested that the ‘critical point’ might even be avoided entirely by suitably 
redefining the boundary-layer outer edge. While the present study shows that 
this suggestion is false for all situations encountered in practice, the definition 
of 6 remains one of the intrinsic weaknesses of the theory. This state of affairs is 
somewhat clarified in $5, where the sensitivity of the throat profiles to the choice 
of S is explored numerically. 

Perhaps the most important potential application of the throat problem for 
supersonic wake flows is the possibility of formulating a much simpler initial 
value problem at the wake throat per se. In  the event that one is able to identify 
possible wake solutions right at  the throat station, and that disturbances down- 
stream of the throat do not influence conditions upstream, this simplScation 
would be of much practical value. Heretofore the major difficulties in generating 
a suitable set of initial profiles for a far wake calculation were (i) the need for 
fist determining the detailed motion of the complicated flow in the base re- 
circulation region and (ii) the difficulty of integrating the equations forward 
through the throat singularity. Obviously both these problems could be avoided 
if, to some approximation, a unique initial value problem could be defined at the 
throat location. That one could start the solution at  the throat with sufficient 
information given is obvious too. The non-trivial problem is to determine the 
minimum amount of information that need be given to yield solutions of a pre- 
scribed accuracy, to pose the problem in such a way that this given information 
can be obtained without recourse to a detailed solution of the base flow region, 
and to determine which pressure gradient at the throat station is compatible 
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with the profile shapes that have been determined by the given information and 
the throat constraint, so as to be able to start the solution. For the Lava1 nozzle 
the latter problem is simply resolved by relating the pressure gradient at, the 
throat to the curvature of the nozzle wall at  the throat station. The present 
problem is more difficult, since the curvature of the streamlines at the edge of 
the layer depends in a complex manner on both the detailed mechanisms taking 
place within the shear layer and its interaction with the inviscid outer stream. 
The solution to this problem is presented in § 3 (iii). 

Finite difference solutions of the higher-order boundary-layer equations with 
free interaction, starting at the wake rear-stagnation point, have also been 
performed (Baum & Denison 1966). Although the governing equations in this 
investigation are partial differential equations and not ordinary differential 
equations as in the integral methods, the same saddle-point type behaviour is 
observed. For the equations to be integrated smoothly through the downstream 
throat one must solve by trial and error an eigenvalue problem for the initial 
outer edge Mach number in the inviscid flow. The interesting feature of this 
work is that the finite difference solution did not indicate a different saddle 
point for each streamtube at  its own throat but rather a single downstream 
singularity asin theintegral method. No explanationis offered as to why the throat 
is still apparently a one-dimensional rather than a two-dimensional phenomenon. 
The theory in § 3 clarifies this point. 

A final topic of interest, alluded to earlier, is the possible change in the upstream 
influence properties of the viscous-layer equations with interaction at the throat 
station. The linear analysis of Lighthill (1950, 1953a, b )  for the behaviour of 
small disturbances in a viscous layer has shown that the free interaction bounpary 
condition introduces certain elliptic features into the problem. More recently, 
Garvine (1968) has developed a different approach based on an Oseen lineariza- 
tion to treat interaction problems of this type. A discussion of the implications 
of both these analyses for the throat phenomenon is presented in the last part 

Section 2 provides a capsule summary of the principal results for the inviscid 
quasi one-dimensional streamtube. Section 3 presents the general theory for the 
two-dimensional viscous layer and develops the detailed analogy with each of the 
key results outlined in § 2. Section 4 discusses the selection of the throat profiles 
and the necessary conditions for a laminar supersonic wake flow to be formulated 
as an initial value problem at the wake throat. Sample numerical calculations 
are then shown in Cj 5 for a typical family of wake-like profiles. Section 6 enumer- 
ates the more important general results. 

of $3.  

2. The inviscid quasi one-dimensional streamtube 
The key results that obtain at the throat of the inviscid quasi one-dimensional 

streamtube are briefly summarized and interpreted below in order to elucidate 
the parallel development and detailed analogy that will be presented for the two- 
dimensional viscous throat in succeeding sections. The inviscid equation relating 
the differential changes in pressure and area for the quasi one-dimensional 
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streamtube, suitably non-dimensionalized, appears as follows (Liepmann & 
Roshko 1957, p. 52). Here M is the Mach number, p the pressure, A the stream- 
tube cross-sectional area, x a co-ordinate measured along the axis of the 
streamtube and y the gas specific heat ratio: 

Mz-ldp 1 d A  
ypM2 dx A dx ' 

- --- -- - 

The analogy follows directly from the detailed comparison of the behaviour of 
(2.1) and the behaviour of its two-dimensional counterpart (3.7). For each of the 
principal results described below for the one-dimensional throat one anticipates 
a two-dimensional equivalent. 

(a )  First, one notes the change in area rule that occurs at M = 1. When 
dp/dx > 0, dA/dx is >. 0 or < 0 for M < 1 or > 1 in that order. The reverse is 
true for dp/dx < 0. 

(b )  If dp/dx is to be bounded at  the station where 

(2.2) M =  1, 

then 
d A  
ax 
_ -  - 0, 

and in view of (a )  this station must also be a minimum area station; that is, 
d2A/dx2 3 0. Only when M = 1 can dp/dx be non-zero if dA/dx = 0. 

(c) The value of the pressure gradient at  the throat station is not arbitrary 
but is related to the throat curvature d2A/dx2. If one divides (2.1) through by 
(M2- l) /ypM2 the resulting expression for dp /dx  is of O / O  form at M = 1 .  This 
indeterminate form oan be evaluated through the application of L'Hopital's 
rule. The x-derivatives of the flow variables that arise in the limiting process 
can be related to dpldx. This procedure yields a quadratic equation for dpldx 
whose solutions are 

at M =  1. dl,  -=  fyp" 
a x  (Y + 1)A" 

Here the star superscript denotes conditions at M = 1. If dpldx is to be real, 
d2Aldx2 2 0. The positive and negative roots lead to  subsonic and supersonic 
flows downstream of the throat in that order. Only at M = 1 can dual solutions 
exist and a downstream branching be initiated. 

(a) Another important feature of the sonic throat is the change in upstream 
influence characteristics of the flow at this station. Once the flow has been 
accelerated to sonic velocity at the throat or minimum area station, a decrease in 
downstream pressure cannot influence conditions at, or upstream of, the throat 
location. In  this sense, the flow at the throat is uniquely determined. The unique- 
ness of the throat solution is an important simplification in nozzle design, for it 
provides a simple yet realistic set of initial conditions for determining the actual 
two-dimensional motion in the diverging portion of a supersonic nozzle. As we 
shall see in $ 5 ,  a related simplification obtains for a shear layer if the u and h 
profiles are limited to a one-parameter family. 
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3. Basic relations for the two-dimensional viscous layer 
As suggested above, it is possible to derive directly from the full compressible, 

non-adiabatic Prandtl boundary -layer equations, without further approximation, 
all the equivalent results for a two-dimensional viscous layer that were sum- 
marized in $ 2  for the quasi one-dimensional streamtube. A parallel development 
with $2 will now be pursued. 

The first objective is to derive the pressure-area relation for the inner viscous 
layer that corresponds to the inviscid streamtube pressure-area relation given 
by (2.1). First, the governing equations for a compressible boundary layer are 
written. In  non-dimensional form they appear as 

(PU), = - (PV), ,  (3.1) 

where 

subscripts denote differentiation, and P Prandtl number. The velocity com- 
ponents u and v have been divided by the free stream velocity urn, while the 
pressure pe, demity p, enthalpy 111 and viscosity ,u have been divided by their 
free stream values. Mw is the free stream Mach number and y the specific heat 
ratio. 

One then eliminates the density derivatives through the use of the state equa- 
tion (3.4) and rewrites the continuity equation (3.1) as 

PV 
I h I‘ 

pu + - > - - h  U d P  PU = - p ~  +-h 
hdx  h (3.5) 

For a given set of u and h profiles, (3.2), (3.3) and (3.5) represent, at  each value 
of y, three equations in the four unknowns cZpe/dx, aulax, ahlax and v. Since 
one of the unknowns dpe/dx does not vary across the layer, a fourth independent 
relation is needed at only one value of the y-ordinate. This relation obtains from 
the description of the supersonic inviscid outer flow at the somewhat arbitrary 
location of the boundary-layer outer edge, y = 6. In the absence of incident waves, 
this description is given by the Prandtl-Meyer simple wave relation, whereas 
if both incident and reflected waves are important the more general description 
of characteristics for rotational flows is required. Except at singular locations, 
such as the throat or ‘critical’ station, the above-mentioned four relations suffice 
to determine uniquely v and the three unknown x-derivatives at  all values of 
y in the viscous layer, including its upper boundary 6. The arbitrariness of 6, 
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and the sensitivity of the results to its definition, are an important weakness of 
the theory which we shall investigate further in Q 5. 

Eliminating uE and h, in (3.5) in favour of dpe/dx through the use of (3.2) 
and (3.3), after some manipulation one iinds 

(3.6) 

One notes that the left-hand side of this last result is simply the exact partial 
differential a/ay(v/u). Integrating (3.6) across the viscous layer, applying the 
boundary condition v = 0 at  y = 0, and rearranging terms, one obtains 

where tans, = vc/ue is the flow deflexion of the streamline at the outer edge of 
the boundary layer. The integration of (3.6) could also be terminated at  any 
intermediate value of y, in which case 

U 

Equation (3.8) illustrates a point that should be kept in mind in boundary-layer 
analyses. One is never free to specify arbitrarily both v and dpe/dx in initiating 
a boundary-layer calculation for a prescribed set of u and h profiles. If &pe/dx is 
specified, the v profile is completely determined from (3.8). If the choice of 
dpe/dx is left open, one is free to specify v at, at most, a single off-centreline 
position, say the value of v at the boundary-layer outer edge. This value we then 
determines dpe/dx, and hence the rest of the v profile. 

Although (3.7) involves integrals across the layer, a distinction should be 
drawn between this result, derived without approximation from the boundary- 
layer equations, and the equivalent result that obtains from the averaging 
methods of multimoment integral theory. In  the latter theory each of the bound- 
ary-layer conservation equations and the velocity moments of these equations is 
integrated across the viscous region. Thus, the detailed dynamic behaviour 
that is described by the locally valid expressions (3.2) and (3.3) for the x-deriva- 
tives of u and h is averaged out, and expressions for x-derivatives of integral 
properties of u and h across the layer are obtained instead. In  contrast, in the 
present theory only the continuity equation (3.5) is integrated across the layer, 
and then only after one has substituted the exact local expressions for u, and 
hz from boundary-layer theory into the continuity equation. Thus, neither is 
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there an averaging of the momentum and energy transport processes occurring 
in the layer, nor do any x-derivatives of integral properties appear. As we shall 
see in the next subsection, the integrals in (3.7) represent the cumulative con- 
tributions of pressure and diffusive mechanisms in each streamtube to the 
displacement of the outer flow. 

(i) The pressure-area relation 
Equation (3.7) is the exact pressure-area relation for a two-dimensional boundary 
layer. Comparison with (2.1) shows that the analogue of dA/dx, the slope of 
the quasi one-dimensional streamtube wall, is tan S,, the inclination of the outer 
edge streamline. There are two contributions to  tan 0,: an inviscid contribution 
which relates the pressure gradient in the x-direction to the adiabatic expansion 
of the integrated streamtube area, and a viscous contribution which represents 
an integrated streamline displacement effect due to the diffusion of vorticity 
and thermal energy. The behaviour of the inviscid contribution is directly 
analogous to the inviscid quasi one-dimensional streamtube. One observes 
that if dpe/dx > 0, the inviscid pressure field produces a positive or negative 
contribution to tan 0, depending on whether 

in that order, while the reverse is true if dpeldx < 0. If the contribution of the 
viscous term to tanB, is neglected in (3.59, the outer edge streamline diverges or 
converges according to whether the 

in exactly the same manner as the inviscid quasi one-dimensional streamtube 
does according to whether M > or < 1. The integral 

j l F a y  
effectively represents a continuous distribution of infinitesimal inviscid stream- 
tubes each of thickness dy whose overall thickness is 6. This integral is not 
new, having appeared earlier in Lighthill's (1950, 1953a, b)  linearized theory 
of upstream influence in a supersonic boundary layer, where it is related to the 
logarithmic decrement of upstream influence. 

It is natural, in view of the preceding discussion, to define the throat station 
for a two-dimensional viscous layer to be that station for which a finite pressure 
gradient produces no change in the flow inclination of the streamline at  the outer 
edge of the boundary layer, i.e. where 

j:!g dy = 0. (3.9) 

Unlike the one-dimensional case, where the streamtube boundaries are parallel at  
the sonic throat, tan0, + 0 at the throat station of a viscous layer as we have 
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defined it above, but has some positive or negative background value given by 
the viscous integral term in (3.7). Equation (3.9) is more general: it applies 
to adiabatic and non-adiabatic flows of arbitrary Prandtl number, and is far 
simpler than the equivalent expression that emerges from the approximate 
integral techniques (e.g. compare with equation (3.6) in Reeves & Lees 1965). 

As a prelude to the more detailed discussion in $ 4  and 5 of the behaviour of 
the integral in ( 4 4 ,  we note here several qualitative features. The defining 
integral for the throat does not depend on the u and h profiles separately but on a 
single combined variable, the Mach number. The integral does not involve Be 
directly, and hence the equation for the outer flow. Equation (3.9) can be solved 
for an arbitrary value of Me by varying the Mach number profiles in the viscous 
region. In  general, Me will be a function of 6 and any parameters aj, i = 1, 2, 
3, ..., n used to describe the Mach number profiles in the viscous layer. The 
integrand increases monotonically from - co a t  M = 0 to 1 at M = co. Thus, the 
integrand is singular for boundary-layer flows which satisfy a zero-slip boundary 
condition. These flows require special treatment. The major contribution to 
the integral accrues from the low-speed flow in the subsonic portion of the viscous 
layer. Only the case of free shear layers is examined here. For these flows, where 
Me > 1 and the centreline Mach number 2IA, is variable and subsonic, a throat 
will, in general, be present. 

(ii) The throat constraint 
One observes that, if dpe/dx is to be bounded at  the station where (3.9) is valid, 
then from (3.7) 

The star superscript is used to denote conditions in the outer inviscid flow at the 
throat station. Since the integral in (3.10) need not vanish, the throat station for 
a two-dimensional viscous layer will not, in general, be a minimum area station, 

The description of the viscous inner flow, represented by the integral term in 
(3.10), is directly coupled to the description of the inviscid outer flow through 
the latter’s relation to tan@,. Thus (3.10) is a compatibility constraint between 
the motion of the inviscid stream and the integrated behaviour of the viscous 
stream. This constraint depends on only the flow variables at  the throat station, 
not on their forward x-derivatives. In  contrast, at all stations other than the 
throat station, the motion of the inner viscous stream can always adjust to 
that of the outer stream due to the coupling between the streamline displace- 
ments of the viscous layer and the induced pressure gradient, dpeldx that this 
displacement generates. That being the case, there is never any constraint 
on the flow variables themselves. Physically speaking, there is a partial break- 
down in communication between the two fluid streams a t  the throat station such 
that the inner viscous stream may not be able to fill the boundaries created for it 
by the motion of the outer flow. 

To illustrate the mathematical nature of the constraint imposed by (3.10), 

5 Fluid Meoh. 39 
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consider the case where incident waves are not important, and tan 0, is described 
by the Prandtl-Meyer simple wave relation 

+tan-l[M;- l]*-tan-l[M;- l]fr = v(M,)-v(M,). (3.11) 

Here Y ( M )  is the Prandtl-Meyer function and the reference station is chosen so 
that at downstream infinity the outer flow is once again parallel to the axis, 
8, = 0, and the free stream pressure p ,  and Mach number N, recovered. From 
(3.9) and (3.11), (3.10) will take the form P(Nm,  M:, 6, ai) = 0, where i = 1, 
2, . . . , n - 1. Note that the i indices stop at  n - 1, since any one of the parameters 
ai, or for that matter 6, can in principal be eliminated by the use of (3.9). For 
known free stream conditions, (3.10) provides a compatibility relation at  the 
throat station between M z ,  S(z*) and any n - 1 parameters used in the descrip- 
tion of the viscous-layer profiles. It is evident that only for n = 1, or when a 
one-parameter family of profiles is used to describe the inner flow, can there be a 
unique relation between the inner and outer fluid streams. In  this case, for given 
values ofM, and d(x*), (3.lO)reduces to a transcendental equation for M:, whose 
real eigenvalues will comprise a discrete set, should they exist. Since each eigen- 
value of M,* is related to the free parameter in the inner profiles by (3.9), the latter 
will also be determined. For all other cases where n > 1, the throat constraint, 
by itself, can never determine a unique inner and outer flow, but simply 
provides a single independent relation between M,*, 6(x*) and the various a,. 

(iii) The pressure gradient at the throat station 

At any station, the pressure gradient required to produce the flow inclination 
tan8, of the streamline at  the boundary-layer outer edge is, from (3.7), 

where (3.13) 

The numerator N and denominator D are functions of x only because of the y 
integration. At the throat station, dp,ldx is of 010 form, since D = 0 by (3.9) 
and N = 0 by (3.10). This indeterminate form can have more than one solution 
and is evaluated through a somewhat elaborate application of L’Hopital’s 
rule, which is in principle equivalent to the derivation of (2.4). In  the limit 
notation, 

where x* denotes the throat station. This limit analysis follows. 
Applying Leibnitz’s rule for differentiation of an integral, and using the 
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defining relation for the Mach number, Ma = M:(u2/h), to express Mx in terms 
of u, and h,, one obtains for the derivative of the denominator in (3.12): 

M i - 1  d8 

Similarly, for the derivative of the numerator, one has 

(3.14) 

(3.15) 

where we have taken advantage of the fact that B+O as y+6. To determine 
dN/dx and dD/dx in terms of the u and h profiles and the edge conditions, one 
needs (a) to eliminate v, which appears implicitly in (3.14) and (3.15), and the 
unknown x-derivatives u, and h, in favour of dpe/dx; (b )  to evaluate aB/az, 
which contains troublesome cross derivative terms of the type uxY, uxYY, h,, and 
hW,; and ( c )  to express dcS/dx in terms of known quantities. 

Consider first (a) above. u can be eliminated from the boundary-layer momen- 
tum and energy equations (3.2) and (3.3) by the use of equation (3.8). The 
desired expressions for u, and h, are 

us= u-47, ape (3.16) ax 

and 

( 3 . 1 6 ~ )  

(3.16b) 

(3.17) 

(3.17 a)  

Note that the expressions for U, 0, H and do not contain any x-derivatives 
or w and, as required, are functions only of the u and h profiles and the edge 
conditions. 

Ordinarily, one might expect that the cross-derivative terms mentioned in 
(b) in the penultimate paragraph would pose a major source of difficulty. How- 
ever, in view of (3.16) and (3.17), these cross derivatives, too, can be expressed 
solely in terms of dpe/dx and the profile shapes: 

5-2 



68 S. Weinbaum and R. W .  Garvine 

Assuming a viscosity law in which ,u is a function of only temperature, one can 
write aB/ax with the aid of (3.18) as 

(3.19) 

after some algebra. B, and B, are given by (A 1) and (A 2) in the appendix, and are 
functions of only the u and h profiles, their y-derivatives and the edge conditions. 

Referring to (c), an independent expression for dS/dx is somewhat arbitrary, 
since 6 itself is not clearly defined. However, a reasonable representation for 
d6/dx, for present purposes, can be obtained by requiring that d6ldx = dF/dx, 
where F is the viscous-layer displacement thickness, 

8 =Jl( 1 - "") ay. 
PeUe 

From (3.1) the overall continuity equation can be written 

dS8 as 
- = tanOe+-- pudy. 
ax Peue dx 0 

(3.20) 

(3.2 1)  

Differentiating (3.20), and equating this result to dS/dx in (3.21), one obtains 

dpe/dx and duelax can be expressed in terms of dpe/dx from the equation of 
state and the isentropic relations of the outer flow: 

dhe - = - (7- l )M%Uez,  due 
ax 

(3.22) 

(2.23) 

where 4, = tanOe and is given by (3.11). Thus, a suitable expression for d8ldx is 

One is now ready to write dNldx and dD/dx in the desired form, in which v, 
and all the x-derivatives appearing in (3.14) and (3.15), are expressed in terms 
of dp,/dx. Combining (3.14), (3.16), (3.17) and (3.24) for dDldx, and (3.15), 
(3.16), (3.17) and (3.19) for dN/dx, one obtains 
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and 

respectively. 

the limiting expression for dp,ldx at the throat station reduces to 
Returning to (3.12), and evaluating (3.25) and (3.26) at x = x*, one finds that 

The Ni and Di (i = 1 ,2 )  depend on only the u and h profiles and their edge values, 
and are given in the appendix, (A3) through (A6). Equation (3.27) is a quadratic 
yielding two solutions for dp,/dx at x = x*. 

(3.28) 

If dp,(x*)/dx is to be real, (Nl + D2)2 > 4D1N2. We shall see in $5 that the positive 
and negative radicals lead to flows in which the 

downstream of the throat, in that order. Unlike the quasi one-dimensional 
streamtube, the magnitudes of the ‘subcritieal’ and ‘supercritical‘ roots for 
dp,ldx at x = x* are not equal, except for the special case Nl + D,  = 0. When 
the radical vanishes, the two roots merge, 

d y =  0 at x = x * ,  

and the throat has a finite length in the physical plane. Only at  x = x* can a 
downstream branching be initiated. In general, for each set of u and h profiles 
satisfying (3.9) and (3.10) there will be two possible downstream solutions com- 
mencing at the throat station, provided real roots to (3.28) exist. In  contrast, 
flows which do not contain a throat have a unique downstream behaviour. 

(iv) Upstream inJEuence 

By analogy with the quasi one-dimensional streamtube, one expects to find 
some change in the upstream influence features of the flow in the vicinity of the 
throat station. The results of the studies of the interaction between an inviscid 
outer supersonic stream and an inner viscous stream, cited in $ 1, all show that 
singular behaviour in the solutions developed in the neighbourhood of the throat. 
It was found, moreover, that only one particular value of some parameter left 
free in the initial data would permit a solution to develop downstream that was 
non-divergent as the throat station was approached. These results suggest that 
the problem was not well posed mathematically as an initial value problem. 
One might postulate that some kind of upstream influence might exist in such 
problems which prevents a proper initial value problem from appearing. 
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A distinctive feature of such flows is that they involve interaction with an 
outer stream and depend on this interaction to set the pressure gradient impressed 
on the viscous layer. In  contrast, ordinary viscous flows of the boundary-layer 
type, which lack interaction with an outer stream, have prescribed pressure 
gradients aud are known to constitute well-posed initial value problems. How- 
ever, in interaction problems, rather than taking the simple role of a driving 
term, the pressure gradient depends in a complicated way on the structures of 
both the boundary-layer and outer flows. It is this difference which accounts 
for the fact that the behaviour of interaction problems (treated as initial value 
problems) is different from that of those without interaction. 

The actual dependence of the pressure field on the rest of the flow field will be 
quite complicated, in general. However, since the manner in which the pressure 
gradient does involve other variables is of such importance, it is appropriate 
here to review a recent analysis by Garvine (1968) which examined a simplified 
and linearized version of the system (3.1)-(3.4). 

The object in that study was to examine the mathematical consequence of 
interaction. In  order to proceed analytically, the complications arising from oom- 
pressibility were omitted and the non-linear convection terms in the momentum 
equation replaced by a linear term involving u, after the fashion of Oseen’s 
linearization. A linearized variation of (3.1 1) was selected to describe the inter- 
action, a form that would be valid in the event that an outer flow governed 
by the linearized supersonic flow equation prevailed. This linear set of model 
equations then appeared as 

u, -k vy = 0, ( 3.29) 

Pex F @Ux+- = __ yM2, R,, uyy’ 
(3.30) 

(3.3 1) 

Equation (3.30) displays the linearized convection term with its constant co- 
efficient Up, a value that might be taken as average in the boundary 1aye.r for 
best application to a real flow. Similarly, ,ii is an average viscosity coefiicient in 
the layer. 

Equation (3.31) expresses the fact that the pressure gradient is proportional to 
vex. In  the event of linearized supersonic outer flow, the constant is 

One wishes to express in the momentum equation in terms of other depen- 
dent variables. From the continuity, (3.29), we may integrate once over y 
to find 

v,= - f L X a y .  0 

Here, the boundary-layer outer edge where y = 6 is taken as a constant for simpli- 
city. Then 

- 

8 - 4% - - - ~ ~ ~ u , , d y .  
ax 

(3.32) 
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Equation (3.32) enables one to replace dpe/dx in the momentum equation 
and obtain an equation in terms of u alone, a linear integro-partial differential 
equation. The surprising feature of (3.32), however, is the fact that it involves an 
integral over the second derivative of u with respect to x. Such derivatives were 
among those dropped from the Navier-Stokes stress terms in making the bound- 
ary-layer approximation. In  general, they are acknowledged to contain the 
upstream influence found in the Navier-Stokes equations. It is the interaction 
in this case that brings such a derivative back into the problem, and one may 
suspect some upstream influence along with it. 

The solution for u appropriate to a wake flow can be developed from Garvine 
(1968) by means of a Laplace transform. Upon inversion one obtains the form 

(3.33) 

The sk constitute a set of real negative numbers, while sp is a positive number. 
Thus, the first term above is required to satisfy the y boundary conditions, the 
second represents a decay of the initial profile, ui(y), and the third represents a 
divergent term. The sign of the divergent term depends on the factor I ,  so named 
because it depends only on the initial profile zci(y) and ve at x = 0. 

One may notice in these results a strong parallel with those reported concern- 
ing forward integration of the full boundary-layer equations with interaction. In  
both problems the downstream solution is divergent. Only for one value of a 
parameter in the intial data ( I  = 0 in the simplified problem) will a non-divergent 
solution obtain. Setting I = 0 imposes a constraint on the initial data and 
requires that u,(O) depend on the details of U&J)  and integrals over it. 

The parallel strongly suggests that the system (3.1)-(3.4) also possesses up- 
stream influence and thus cannot be attacked as an initial value problem. 
The results shown in (3.33) for the model set of equations show that if that 
problem is to be attacked as an initial value problem, then a constraint must be 
placed on the initial data. 

Such would appear to be the case for the non-linear compressible system as 
well. In  fact, an expression for dpe/dx, similar to that of (3.32) was obtained in 
Weinbaum & Garvine (1968): 

(3.34) 

T and Z are complicated functions, but involve only the x-derivative u, and its 
square. The coefficient a is defined as 

For a, he, v, and 2 constant and T = 0, (3.34) is formally identical to (3.31). 
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In the exact system, the upstream influence enters in a much more complicated 
role with the Mach number profiles playing an important part. 

Somewhat more insight into the role played by the Mach number profiles may 
be seen by simplifying equations (3.2) and (3.3) by omitting the convection terms 
pvu, and pvh,, respectively, but leaving all else intact. Then, the coefficient a 
reduces to 

a = p ( l - M 2 ) .  

Thus, when the Mach number profiles shift from subsonic to supersonic in some 
average sense, a change in sign occurs in the term involving uxx. If we examine 
what happens to the results for the linearized model set when K is changed from 
a positive to a negative value (as in the case of physical interest), it is readily 
shown that sp in (3.33) changes from positive to negative, and the divergent 
character of the solution vanishes. These reflexions bear out the suggestion that 
near the throat station the shift from subcritical to supercritical (subsonic to 
supersonic in the mean) flow eliminates the upstream influence from the 
problem, and hence also the divergent behaviour. Downstream of that station, 
then, the problem should be well set as an initial value problem. 

The above developments do not, however, prove that precisely at  the throat 
station the upstream influence should cease as one moves from the side of the 
throat where p!P- 1)/M2dy < 0 

to the side where this integral is positive, but two arguments may be advanced 
in support of this. First, the numerical results described in 5 5 ,  where the equations 
were integrated in the downstream direction starting at  the throat station, 
encountered no behaviour downstream suggestive in any way of upstream 
influence. Secondly, Lighthill (1953a, b )  shows that, to a first approximation, 
the distance upstream, over which a small disturbance to a supersonic viscous 
layer is felt, is proportional to 

-/)!.P- l ) /MZdy 

(so long as the integral itself is negative, as with a body boundary layer). This up- 
stream influence then vanishes when the integral itself vanishes at the throat 
station. 

The analogy of the two-dimensional viscous layer to the quasi one-dimensional 
streamtube is thus valid with respect to upstream influence as well. In both cases, 
the upstream influence appears to vanish downstream of the throat station as 
defined for each flow. 

4. Transformation of basic relations and the selection of throat profiles 
It is convenient in applying (3.9) and (3.10) to profiles typical of either bound- 

ary layers or free shear layers to define the new variables, 
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which are independent of the particular edge values we and he. Similarly, one 
wishes to define a scaled normal co-ordinate, which is independent of the actual 
physical thickness S of the viscous layer, and is proportional to the Howarth- 
Dorodnitsyn variable of compressible boundary-layer theory, used to reduce 
the compressible equations to their incompressible form. Thus, we introduce 
the normalized density transformation 

Here, qs is the value of y at y/S = 1 .  In  these new variables (3.9) and (3 .10 )  can 
be rewritten as 

and 

where we have used the Chapman-Rubesin viscosity law and k is the Chapman- 
Rubesin constant. The edge conditions are given by (3 .11)  and the other isen- 
tropic relations for the outer flow. Pursuing the discussion at  the end of parts 
(i) and (ii) in $ 3  one sees that (4 .3 )  and (4 .4)  are functional relationships of the 
form 

F(MZ,ys,cxi) = 0, i = 1,2 ,  ..., n, ( a h )  

RwL8 = RmL8(llfz, M,, ys, ai), i = 1 , 2 ,  . .., n - 1, ( 4 . 5 8 )  

where the ai are the parameters describing the V and T profiles, and one of the 
ai in (4 .5b )  has been eliminated through the use of ( 4 . 5 ~ ) .  

For an arbitrary but constant value of Rm,8(x*), the Reynolds number scaling 
for the pressure gradient at the throat station (3.28) can be deduced in the follow- 
ing manner. With R,,S held constant, dy cc ( l/RmL) dy. From (A 3 )  through (A 6 )  
one can show that D, cc ( l / R w L ) ,  D ,  cc 1 ,  Nl cc 1 and N, cc RwL. Thus, for a given 
value of R,Lb at the throat, dp, (x*) /dx  is proportional to RmL. Therefore, 
dpe(x*) /dx  can be calculated for a unit free stream Reynolds number, and scaled 
to  any other RmL, simply by multiplying by RaL. Pressure gradient curves, like 
those shown in figure 5,  apply for all RwL. 

Because of the saddle-point character of the throat singularity, and the 
apparent change in the upstream influence properties of the interaction process 
that occurs at  the throat station, this station provides a convenient initial station 
for a downstream integration. Experience with the hypersonic wake problem 
shows that if the viscous-layer profiles are prescribed upstream of the wake 
throat, minute adjustments, involving double precision accuracy, of the free 
parameter used in the description of these profiles are required if one is to 
integrate numerically, starting at  the wake reattachment stagnation point, a 
significant distance toward the wake throat. In  general, such costly and 
delicate trial and error adjustments are avoided if one can start the solution 
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directly at  the throat station with a compatible set of u and h profiles and 
associated pressure gradient. 

Since the pressure gradient at the throat can be determined for an arbitrary set 
of u and h profiles from (3.28), the remaining problem is the selection of a suitable 
set of throat profiles for the problem of physical interest. To aid in this selection 
process one has two conditions, (4.3) and (4.4), at one’s disposal that must be 
satisfied. Beyond this, the accuracy of the throat profiles will depend largely 
upon how much is known about the upstream flow. If one wishes to avoid a 
detailed analysis of that flow, then this knowledge will be limited very likely to 
only certain gross features of the upstream motion; probably, the most important 
of these will be R,,6 = Em,, the freestream Reynold number based on viscous- 
layer thickness at  x = x*. We shall see in Q 5 that this gross feature is particularly 
convenient for wake-type flows where 0: < 1, since R,, does not have to be known 
accurately to obtain a reasonable approximation for the throat profile shapes. 
In  general, the specification of R,, would appear to be the minimum additional 
information necessary to select a set of u and h throat profiles from a given one- 
parameter family. It is evident that, once an approximate value for R,, is ob- 
tained either from an appropriate free shear layer calculation or from experiment, 
the throat constraint (4.4) or (4.5b) will determine a discrete set of values for 
MZ or 8:. For each such eigenvalue, the defining relation €or the throat (4.3) or 
( 4 . 5 ~ )  will then determine the free parameter al, which distinguishes the profile 
shapes. For flows in which MZ is not a sensitive function of R,, (0, < l), the 
accuracy of the throat profiles will depend primarily on how suitable the parti- 
cular one-parameter family chosen is for the problem being studied. Of course, 
each new piece of information that goes into refining the u and h profiles (e.g. 
the centre-line stagnation enthalpy at the throat for non-adiabatic wakes) 
must first be obtained from an appropriate model of the upstream flow. The 
sensitivity of H,* in (4.5b) to each new input will then determine how sophisti- 
cated an upstream model is required to obtain this input. While a detailed 
solution of the upstream flow cannot be avoided if very accurate throat profiles 
are required, the throat analysis is still an essential part of such a detailed solu- 
tion. In  these detailed models-e.g. Weiss’s (1967) model of the hypersonic near 
wake-one free parameter such as the base pressure or stagnation enthalpy 
must always be left open in the upstream description so as to satisfy the throat 
constraint (4.4) downstream. 

Since the throat problem of greatest contemporary interest is the hypersonic 
near wake, the authors have chosen it to illustrate the theory. Other viscous 
throats may be present in jets, highly cooled boundary layers and other situa- 
tions, but these applications will not be examined here. The selection of an 
accurate family of throat profiles for the high Reynolds number hypersonic 
wake is difficult because of the complexity of the flow in the wake recompression 
region (e.g. see the experimental measurements of Batt & Kubota 1968). Despite 
this uncertainty, most investigators seem to agree that the Stewartson (1954) 
family of wake-similar profiles provides a reasonable description of the laminar 
portion of the wake downstream of the reattachment stagnation point, and that 
these profiles become increasingly more accurate as one proceeds downstream. 
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The Stewartson wake-similar profiles are derived from the Falkner-Skan 
equation for compressible adiabatic flow: t- 

and satisfy the boundary conditions appropriate for a free shear layer 

Here, V = fv; V approaches unity in an exponential manner and is within 0.1 yo 
of unity when 7 is roughly 4 or 5, depending on p. The pressure gradient para- 
meter in the similarity theory, p, is a single valued function of the centre-line 
velocity ratio x; this function is plotted in Kennedy (1964). The centre-line 
Mach number ill,, the parameter we shall use to distinguish the profiles, is 
related to V ,  by 

(4.8) 
v,z 

2 M2, 

1 '  
M: = 

Y A ( 1 -  VE)+- 

In  the present context the value of p is dissociated from its mathematical defini- 
tion in the similarity theory and is used simply as a parameter to identify profiles 
compatible with the throat constraint. The h or T profile obeys the Crocco 
integral for adiabatic flow with P = 1, 

T =  l+(T)(l- Y-1 V 2 )  MZ2, (4.9) 

and hence is determined for a given value of MZ once the boundary-value prob- 
lem posed by (4.6) and (4.7) is solved for V .  

5. Numerical results 
In  this section numerical results will be presented for the one-parameter family 

of wake-like profiles described by (4.6), (4.7) and (4.9). As discussed in the pre- 
vious section, these profiles depend on only the parameter il& and the external 
Machnumber M,*; thelatter is determined by the throat-constraint equation (4.4), 
which relates M,* and Rm8. Therefore, for a given value of M,*, (4.3) reduces 
to an integral equation for the parameter M,, which is then solved subject to the 
auxiliary equations and conditions for the profiles (4.6), (4.7) and (4.9). 

The above-mentioned solution is readily accomplished by trial and error 
numerical techniques. One chooses a trial value of M,; the corresponding value 
of V ,  is then obtained from (4.8); the boundary conditions for (4.6) are split be- 
tween 7 = 0 and 7 = 03. One finds that, for each trial initial value of fq(0) or x, 

t Reeves & Lees (1965, p. 2094), state that the only similar solution for B compressible 
free shear layer is for adiabatic flow, in which case the Cohen-Reshotko (1956) equations 
for non-adiabatic flow reduce to (4.6) above. 
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there is only one value of /3 for which V will asymptotically approach unity as 
7 + co. A satisfactory first estimate for this value of /3 can be obtained from figure 
4 in Kennedy (1964), and /3 can be determined to greater accuracy by numerical 
iteration. Once the V and T profiles are determined in this manner, the integral 
in (4.3) is evualated numerically, starting at  y = 7 = 0 and terminating at the 
value of y, y = Y(x ) ,  or equivalently the value of 7 for which the integral vanishes. 
In general, this value of 7 will differ from qa, the definition of the boundary- 
layer outer edge. The difference is then used as a guide for selecting the next 
trial value of M,. Adopting a simple iterative scheme based on the aforementioned 
difference, the authors solved (4.3). Mc could be determined to four significant 
digits using less than 15 see of IBM 7094 computer time. 

Figure 1 shows the solution to (4.3) for M, as a function of the location of 
the y = Y surface in V space, with MZ treated as a fixed parameter. Equivalently, 
the curves show the sensitivity of the throat profiles, as indicated by the para- 
meter M,, to the definition of the boundary-layer outer edge (e.g. if MZ == 1.5 
and V,  is varied from V,  = 0.998 to = 0.98, M, changes from 0.705 to 0.760). The 
figure clearly disproves the suggestion by Weinbaum (1967) that the wake throat 
might be eliminated entirely by suitably redefining the boundary-layer outer 
edge. It is evident that the y = Y surface moves quickly into the inviscid flow 
for all values of MZ as the centre-line Mach number Mc is decreased past 0.6. 
Thus, the boundary-layer outer edge must always intersect the y = Y surface 
in an integration that is initiated at  the wake rear stagnation point. This inter- 
section then defines the wake throat. 

A second point of interest in figure 1 is the change in behaviour of the y = Y 
surface as the inviscid flow Mach number MZ is increased. At the low supersonic 
speeds (e.g. MZ = 1-5) small changes in the definition of 6 (say from the location 
where V,  = 0.998 to V,  = 0.98) lead to significant changes in H,, and hence to 
significant changes in the throat profiles themselves. At high Mach numbers 
(e.g. Me = 10) M, is much more insensitive to the definition of the boundary- 
layer outer edge. One may expect such behaviour because of the well-established 
properties of hypersonic boundary layers. For increasing external Mach number 
the boundary-layer edge becomes ‘sharper’ and is less and less subject to arbi- 
trary location. 

The behaviour just discussed is also illustrated in figure 2, where the solution 
of the centre-line Mach number a t  the throat station M,* is shown for four differ- 
ent definitions of 6, V, = 0-95, 0.995, 0.9995 and 0.99995, which span nearly all of 
the values used in the literature. One notes that the difference between any two 
solution curves for M,* for these four definitions of 6 continuously decreases as 
MZ increases, and appears to asymptote to a fixed difference as MZ approaches 
infinity. At MZ = 20, M,* differs by 1-63 yo upon comparing the results for V,  = 

0-95 and 0.995, by 0.38 yo for V,  = 0.995 and 0.9995, and 0.23 yo for V,  = 0.9995 
and 0-99995. For smaller values of HZ these percentage differences are all some- 
what larger, but again the difference between any two neighbouring pairs of 
curves becomes smaller as larger values of are considered in the definition of 6. 
Once V, = 0-995, a further increase in 6, such that 1 - V, is decreased by two orders 
of magnitude, changes M, by less than 1 % over most of the high Mach number 
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FIGURE 2. Edge Mach number ws. centre-line Mach number. A ,  Ai (1967), quartic profile. 
B, Ai (1967), cubic profile. C, Reeves & Lees (1965). D, Present theory, 6 at U/U,  = 0.95. 
E, 0.995. P, 0.9995. G, 0.99995. 
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range. As a practical matter, the sensitivity of the results to 8 is unimportant, 
at  least for the free shear layer. 

What dependence there is on 8 is a consequence of using boundary-layer equa- 
tions in one part of the flow field, and inviscid flow equations in another. If 
boundary-layer equations are to be used, some arbitrary division of the flow field 
is unavoidable. The results must always be sensitive in some degree to that 
fraction of the flow field assigned to the boundary-layer equations. The key test 
is whether or not perturbations from some physically reasonable choice of Q affect 
the results to an unacceptable degree. The calculations show that for the prob- 
lem considered, at least, they do not. 
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FIGURE 3. Reynolds number based on layer thickness at throat ws. edge Mach number. 
y = 6 at U / U ,  = 0-95----; y = 6 at U / U ,  = 0-995--. Vertical lines--- solution 
of (5.4) for minima in R,, curves. 

Also shown in figure 2 are the equivalent results of the integral methods (Ai 
1967; Reeves & Lees 1965). Ai used cubic and quartic polynomical profiles, 
whereas Reeves & Lees employ the same Stewartson family used herein. Interest- 
ingly, the difference between Ai's solution curve and the present exact treatment 
of the boundary-layer equations is less than that between the Reeves & Lees 
solution curve and the present results, although the same profiles were used for 
the latter comparison. This observation suggests that the inaccuracy of the 
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integral method due to the averaging of the governing equations is at least as 
important as the differences due to the differences in profile shape. 

In  figure 3 we have plotted R,, as a function of M,* from (4.4) with Mm 
as a fixed parameter. The approximately 200 cases calculated in plotting figures 
3 (not all cases shown) and 4 required on the order of 20 min of IBM 7094 com- 
puter time. Figure 4 i s  an equivalent plot to figure 3, except that the inviscid 
flow inclination angle 6: is used as the abscissa. These two figures are intended to  
provide a comprehensive map of the Stewartson wake-like profiles that will 
satisfy the throat constraint for a wide range of R,, and M, of interest. Once 
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FIQURE 4. Reynolds number based on layer thickness at throat vs. edge streamline angle. 

R,, has been estimated either by experiment or by an appropriate free shear 
layer calculation, figures 2, 3 or 4, and figure 5 (which gives the associated pres- 
sure gradient), provide all the necessary information needed to initiate a far 
wake calculation at the throat station. In general, R,, will depend upon M, 
and the body geometry. Again, this simple reformulation of the initial value 
problem for the far wake is only possible if one uses a one-parameter family 
of initial profiles, since the throat constraint reduces only by one the number of 
free parameters used in the u and h profile descriptions. 

Several points are of particular interest in figures 3 and 4. One notes from figure 3 
that the so-called ‘eigenvalues’ for M,* are sensitive to the definition of 6 for only 
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the lower supersonicvalues of M,. If 6is taken to be at V ,  = 0.95 or 0-995, then for 
M, > 5 there is no significant change in the R, 8(5*) curves. Zero, one, two or three 
eigenvalues may exist for it€:, depending on the choice of 6. However, as one 
observes from figure 5 ,  not all portions of these R,&*) curves are realizeable, 
since (3.28) for the pressure gradient does have real solutions for all values of 
M,* > M,. Also, the physical significance of the highest eigenvalues is question- 
able, since figure 4 shows that in many cases they occur for flow deflexion a:ngles 
in excess of the angles for which one would normally expect the boundary- 
layer equations to be valid. 

Perhaps the most intriguing feature in figures 3 and 4, which was also reported 
by investigators using the integral method (Webb et al. 1965; and Ai 1967), 
is the failure of any throat solutions to exist when R,, is decreased below some 
minimum critical value. Conversely, one can state from figures 3 and 4 that for 
given values of M, and R,, there is a minimum thickness of 6(z*) for which a 
throat can exist. To discover the origin of this behaviour we return to (3.10) 
and rescale the y co-ordinate so that the upper limit on the integral is unity. 
Thus, one lets dy = SdfT, and (3.10) becomes 

Differentiating with respect to it€,*, one has 

The first term on the right-hand side of (5.2) is a slowly varying fiinction of M,*, 
since M,* and consequently the profile shapes are not sensitive functions of M,* 
except as M,* + 1 (see figure 2). Therefore, (5.2) is primarily a balance between 
the p,* tan8,* term and the term involving ab/aM,*. Thus, when S is a minimum 
a6/aM,*= 0,  and 

d(p,* tan 0;) 
dM; 

w 0. (5.3) 

One can readily show from the isentropic relation for the outer flow (Xll), 
and the related expression for pe,  that pt tan 8: has a maximum when 

sin28,* = -- [Mz2-  116. 
YMZ2 (5.4) 

Solutions to this transcendental equation are listed in table 1 and are shown by 
the dashed vertical lines in figure 4. The close agreement with the actual minima 
in the R, 8 curve is evident. These minima are a basically inviscid phenomenon. 
As [ 0,l is increased, p; must decrease, since the amount of recompression re- 
quired to turn the outer flow back parallel to the centre-line and recover the 
ambient pressure is increased. 
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~~ ~ 

M ,  1.5 2.0 3.0 4.0 5.0 6.0 8.0 10.0 15.0 20.0 
M: 2-135 2.607 3.647 4.738 5.848 6.969 9.226 11-496 17.188 22-891 

TABLE 1. Locus of minima for R,, curves 

The solution curves for the pressure gradient per unit Reynolds number at 
the throat station that correspond to several of the M, = constant curves in 
figures 3 and 4 are shown in figure 5. For given values of M, and M,*, (3.28) 
need be calculated for only a single value of RwL, since the throat pressure gradient 
can be scaled to any other R,, following the arguments presented in $4. Over 
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M: 
FIGURE 6 .  Throat pressure gradient vs. edge Mach number. A ,  upper scale. 

B, middle scale. C, lower scale. 

most of the region of interest two roots exist, both positive. The lower root 
represents a flow where the centre-line Mach number accelerates through the 
throat, the integral 

becoming positive, whereas for the upper root the centre-line Mach number 
decelerates, and the integral becomes negative. The other interesting observa- 
tion is that the two roots eventually merge and become one as N: increases, 
and no solutions for dp,/dx exist beyond this merger point. As stated previously, 
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The solid curves in figure 6 are wake-like solutions in that they exhibit a 
recompression followed by a return to ambient conditions (note that x is ex- 
pressed in terms of body length rather than base diameter). Again, the selection 
of the appropriate curve for a given body and prescribed set of flight conditions 
is tantamount to choosing the correct value for R,, in figures 3 or 4. Perhaps 
the most interesting feature of the wake-like curves in figure 6 is that somewhere 
between a,* = 6.21 and MZ = 7.5 there is a solution that minimizes the length 
of the pressure recovery region starting at x = x*. This solution might represent 
the most efficient recompression process or, equivalently, the solution that leads 
to the minimum increase in entropy. This hypothesis is being studied further. 
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not all portions of the curves in figures 3 and 4 represent physically possible 
solutions. Each set of throat profiles must be associated with some real pressure 
gradient if it is to be physically meaningful. 

Figure 6 illustrates the downstream behaviour starting at the throat station 
of representative profiles that satisfy the throat constraint (3.10) or (4.4). 
The initial conditions for the calculations were obtained from figure 2 and re- 
presentative points on the M, = 6 curve in figures 3 or 4, and 5 .  The compressible 
boundary-layer equations (3.1)-( 3.4) were integrated numerically using an 
implicit finite difference scheme developed by Flugge-Lotz & Blottner (1962). 
The dashed curves in figure 6 correspond to the upper root for dp,(x*)/dx. For 
these solution curves the ambient pressure is not recovered, but a downstream 
stagnation point is achieved instead. These curves are terminated at the station 
where the axial velocity vanishes. These flows may be indicative of the presence 
of a downstream obstacle or a reverse jet. 
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6 .  Conclusions 
The more important general results of the investigation are listed below. 
(i) A two-dimensional viscous layer satisfies an over-all pressure-area relation 

that is closely related to that of the one-dimensional adiabatic streamtube. 
(ii) The behaviour of the viscous layer at  the station where the 

is analogous to the one-dimensional sonic throat, in that (a )  there is an equivalent 
change in the inviscid pressure-area behaviour for the layer treated as a whole, 
( 6 )  there is a constraint present on the inclination angle of the outer edge stream- 
tube, (c) dual solutions for the pressure gradient exist leading to either subsonic 
or supersonic behaviour in the mean downstream of the throat, and (d) there is 
a change in upstream influence properties of the flow at this station. 

(iii) The linearized theory of Garvine (1968) points to the existence of a single 
growing mode for subcritical initial value problems formulated upstream of the 
viscous throat, and the disappearance of this mode as one crosses the throat 
station. 

(iv) The defining expression for the throat relates the local Mach number Me 
in the supersonic inviscid outer stream to the n parameters used in the profile 
descriptions of the inner viscous stream. The throat constraint relates R,, 
to Me and n- 1 of the above parameters. Only when n = 1, a one-parameter 
family of profiles, will zero or a discrete number of compatible inner and outer 
flow solutions exist for a given value of R,, and prescribed ambient conditions. 

(v) For a one-parameter description, the throat provides a convenient initial 
station for a downstream integration. All the initial data can be related to a 
single quantity &,. This simplified description, for example, permits one to 
determine an approximate set of initial conditions for the downstream flow 
in the supersonic wake problem without first determining the detailed motion 
in the base flow region. 

(vi) The theory confirms many of the qualitative predictions of the integral 
techniques. However, the present exact treatment of the boundary-layer 
equations indicates that the inaccuracy of the integral averaging procedures 
per se can be more important than detailed variations in the profile shapes. 

A preliminary version of this paper, AIAA Preprint 68-102, was presented by 
S. W. at the AIAAsixth Aerospace Sciences Meeting in New York, 22-24 January 
1968. This work was performed while S. W. was a consultant to and R.W. G. 
an employee of the General Electric Company Space Sciences Laboratory, the 
computer programming for the paper was ably conducted by M i  Vincent Kirk 
of that laboratory. The study was supported by the Office of Naval Research, 
United States Navy contract N00014-68-C-0169, with funds made available by 
the Advanced Research Projects Agency. 
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Appendix 
The expressions for B, and B, referred to in (3.19) are 

and 

where 

The expressions for N,, N2, D, and D, referred to in (3.28) are 

and 

where = vz/uz = tant?:. 
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